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Appendix
We present detailed experiment settings and additional ex-
periment results in this section. Moreover, the implementa-
tion codes of the proposed method (SRD-TCN and SRD-
GRU) are offered in the supplementary materials.

Experiment settings

This section will give more detailed experiment settings, in-
cluding dataset description and hyper-parameter settings.

Dataset description A detailed description of the datasets
is presented below. We split the forecasting datasets into
train, valid, and test sets in chronological order and con-
ducted cross-validation on the neonatal dataset. The statis-
tics and split details are presented in Table 2.

• Solar (Lai et al. 2018) includes the solar power produc-
tion records in the year of 2006, which are sampled every
10 minutes from 137 PV plants in Alabama State.

• Electricity (Lai et al. 2018) records the hourly electricity
consumption in kWh ranging from 2012 to 2014, for n =
321 clients.

• Pems-bay (Li et al. 2017) contains average traffic speed
measured by 325 sensors in the Bay Area ranging from
Jan 2017 to May 2017, offered by California Transporta-
tion Agencies (CalTrans).

• Metr-la (Li et al. 2017) contains average traffic speed
measured by 207 loop detectors on the highways of Los
Angeles County provided by the Los Angeles Metropoli-
tan Transportation Authority ranging from Mar 2012 to
Jun 2012.

• Neonatal seizure detection dataset (Stevenson et al.
2019) contains multi-channel EEG recordings from hu-
man neonates at the Helsinki University Hospital, and the
visual interpretation of the EEG by the human experts.

*The work was conducted during the internship of Yuchen Fang
and You Li at Microsoft Research. Correspondence to Kan Ren and
Weinan Zhang.
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Figure 1: The learning curve of w/o PL

Hyper-parameter settings The hyper-parameters of
SRD-GRU and SRD-TCN are presented in Table 1 for
reproducibility. The search spaces of all common hyper-
parameters, e.g., hidden dimension or learning rate, are
shared among all compared methods for fair comparison.
More implementation details can be referred to in our code.

Additional ablation study
Recall that in Eq. (19), the prediction loss Lprediction loss is the
combination of Lpred(ŷ,y), Lpred(ŷp,y) and Lpred(ŷd,y)
to ensure both prior and dynamic graphs model meaning-
ful spatial relation information for final predictions. To jus-
tify the design of our prediction loss, we conduct ablation
study on SRD-TCN with Lpred(ŷp,y) and Lpred(ŷd,y) re-
moved, denoted as w/o PL. As ŷp and ŷd is not opti-
mized, the final prediction of w/o PL is instead generated
as ŷ = PM(Concat[Hd

Q,H
p
Q]).

The R2 results on Pems-bay are shown in Table 3. w/o
PL performs worse then SRD-TCN and achieves similar re-
sults with w/o MM (SRD-TCN without min-max learning
paradigm), which illustrates the importance of Lpred(ŷp,y)

and Lpred(ŷd,y) in improving the effectiveness of graph
learning. The reason for the performance drop is that the dy-
namic graphs are only optimized to maximize the graph dis-
tance without capturing meaningful information for the final
prediction, as it is relatively simple for the dynamic graphs
of all samples to maximize their distances between a global
prior graph and there is no direct limitation brought by the



hyper-parameter Electricity Solar-energy Pems-bay Metr-la Neonatal
SRD-GRU SRD-TCN SRD-GRU SRD-TCN SRD-GRU SRD-TCN SRD-GRU SRD-TCN SRD-GRU SRD-TCN

learning rate 1e-3 1e-4 1e-3 1e-4 1e-3 1e-4 1e-3 1e-4 1e-3 1e-3
embedding dimension e 16
k in topk operation 20 2
density controller α 3

teleport probability β 0.05
network depth Q 3 3 1 3 2 3 3 3 3 10

GM depth S 3 2 3 3 3 2 3 2 2 2
hidden dimension D 8 8 8 8 8 8 8 8 16 8

min-max loss coefficient α1, α2 0.0, 10.0 1.0, 1.0 1.0, 10.0 1.0, 1.0 1.0, 1.0 1.0, 1.0 10.0, 1.0 10.0, 1.0 10.0, 1.0 1.0, 1.0

Table 1: The hyperparameters of SRD-GRU and SRD-TCN

Dataset # Samples # Variables Length (T ) Train-Valid-Test ratio

Solar-energy 52,560 137 168 (0.6, 0.2, 0.2)
Electricity 26,304 321 168 (0.6, 0.2, 0.2)

Metr-la 34,272 207 12 (0.7, 0.2, 0.1)
Pems-bay 52,116 325 12 (0.7, 0.2, 0.1)

Neonatal 13,389 3 7680 4-fold cross validation

Table 2: The statistics of datasets.

Ablations
Horizon L 6 24 48 96

w/o MM 0.872 0.750 0.708 0.695
w/o PL 0.852 0.752 0.718 0.692

SRD-TCN 0.876 0.772 0.723 0.720

Table 3: The R2 results of ablated experiments on Pems-bay.
The higher, the better.

prediction losses. Figure 1 illustrates the learning curves of
w/o PL, where the graph distance D(Ã

p
, Ã

d
) keeps increas-

ing rather than first drop to a reasonable value then rise
slowly as shown in Figure 4(b) in the main paper, indicating
that the dynamic graphs do not first learn reasonable mean-
ingful spatial relations and the minimization phase fails. The
R2 results together with the learning curves show that the
prediction losses are required for effective graph learning.
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