
Universal Trading for Order Execution with Oracle Policy Distillation
Supplemental Materials

Yuchen Fang, 1* Kan Ren, 2 Weiqing Liu, 2 Dong Zhou, 2

Weinan Zhang, 1 Jiang Bian, 2 Yong Yu, 1 Tie-Yan Liu2

1Shanghai Jiao Tong University
2Microsoft Research

{arthur fyc, wnzhang}@sjtu.edu.cn, yyu@apex.sjtu.edu.cn
{kan.ren, weiqing.liu, zhou.dong, jiang.bian, tyliu}@microsoft.com

Implementation Details
In this section, we introduce the details of our implementa-
tion of the compared methods, including the learning algo-
rithm for our method, the detailed network architecture and
the hyper-parameter settings.

Learning Algorithm
We present the detailed learning process of our proposed
method. As is discussed in our paper, the policy distilla-
tion has teacher-student paradigm thus the learning proce-
dure is two-phased As shown in Algorithm 1, in the first
phase, teacher is trained to convergence. Then the optimal

Algorithm 1: Teacher-student learning algorithm
Random initialize φ and θ as the parameters for

teacher and student respectively.;
φold ←− φ;
repeat

Run policy πφold
in environment for M

episodes;
Compute Advantages for each collected

timestep.;
Optimize loss Lp + λLv w.r.t. φ, with K

epochs and batch size B;
φold ←− φ;

until Teacher is converged;
θold ←− θ;
repeat

Run policy πθold in environment for M
episodes;

Compute Advantages and Ld for each
collected timestep.;

Optimize loss L = Lp + λLv + µLd w.r.t. θ,
with K epochs and batch size B;
θold ←− θ;

until Student is converged;

*The work was conducted when Yuchen Fang was doing intern-
ship at Microsoft Research Asia.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

𝒉௧
୮୳ୠ

𝒔௧
୮୳ୠ

𝒔௧
୮୰୧୴

𝒉௧
୮୰୧୴

𝒎௧

𝜋(⋅ |𝒔௧) 𝑉(𝒔௧)

Public variable Private variable

Recurrent
layer

Inference
layer

Actor
layer

Critic
layer

Recurrent
layer

Figure 1: The architecture of our policy network.

policy πφ is used to guide the student in the second phase
following the method we proposed in the Methodology sec-
tion.

Network Architecture
In this section, we describe the policy network’s architecture
of our proposed OPD method in detail. The overall architec-
ture is shown in Figure 1. Recall that, at every timestep the
input of policy network can be divided into two parts, the
public variables and the private variables, denoted as spub

t

and spriv
t respectively. We utilize two recurrent neural net-

works to extract high level representation from public and
private variables as bellow

hpub
t = f pub(spub

t) , (1)

hpriv
t = f priv(spriv

t) . (2)
Specifically, we implement Gated Recurrent Unit (GRU)
(Cho et al. 2014) as the recurrent unit f(st|ht−1), calculated
as

zt = σ(Wz · [ht−1, st]) (3)
rt = σ(Wr · [ht−1, st]) (4)

h̃t = tanh(W · [rt � ht−1, st]) (5)

ht = (1− zt)� ht−1 + zt � h̃t (6)

After getting the representations hpub
t and hpriv

t , we con-
catenate them as the input of a three-layer multi-layer
perception (MLP) with Rectifier (ReLU) activate function
ReLU(x) = max(0, x) to get a comprehensive representa-
tion of the state as

mt = g([hpub
t ,hpriv

t]) . (7)

Finally, the representation m is fed into two fully-connected
layers to generate the output of critic V (st) and actor
π(·|st).

V (st) = pv(mt) , (8)
π(st) = pπ(mt) . (9)

Hyper-parameters
In this section, we present all the hyper-parameters we
use for result reproduction. There are two sets of hyper-
parameters, the environment settings and the algorithm set-
tings.

Environment settings All parameters for the environment
and our MDP are listed below as the environment settings.

Penalty coefficient α controls the degree of the market im-
pact from the trading activities have on market price. We
set α = 100 for all the experiments.

Discount factor γ is set to 1 as the overall profit over the
whole trading horizon is the optimization goal as defined
in Eq. (1) in the main paper.

Algorithm settings All the compared algorithms can be
divided into financial model-based algorithms and learning-
based algorithms. And for model-based algorithms, both
TWAP and VWAP are non-parametric methods. As a result,
we only present the parameter setting of AC. AC (Almgren
and Chriss 2001) provides a unique optimal execution strat-
egy for each value of risk aversion as

qt+1 =
2sinh(12k)

sinh(kT)
cosh(k(T − t+ 1

2
))Q (10)

where

k = cosh−1(
1

2
k̃2 + 1) (11)

and

k̃2 =
λσ2

η
(12)

Here ε = 0.0625 is the bid-ask spread. η = 2.5 × 10−6 is
the temporal impact coefficient. σ is the volatility of the in-
strument which we estimate by taking the average volatility
of last 30 days.

The hyper-parameters used by all learning-based methods
are presented in Table 1, together with the searching ranges
within which we fine-tuned the parameters. All learning-
based methods are implemented based on Tianshou frame-
work (Weng et al. 2020). Please refer to its main page1 for
more detailed explanations of the parameters.

1https://github.com/thu-ml/tianshou

Algorithm Parameters Search Range

General

learning rate: 1 ×10−4 —-
B: 512 {512, 1024}
activation functions: ReLU —-
GRU cell size: 64 {64, 128}
optimizer: Adam —-

DDQN target update freq: 200 {100, 200}
M : 150 {150, 300, 1500}

PPO M : 10000 {5000, 10000, 20000}
λ: 1.0 {0.5, 1.0}

OPDS MLP sizes: 128, 64, 32 —-
OPD µ: 0.01 {0.001, 0.01, 0.1}

Table 1: Parameters and the search range of parameter-
tuning for each Algorithm. Here target update freq is the
frequency of updating the target network’s parameters in
DQN. And M means the number of episodes to sample dur-
ing each step of training.

Additional Experiment Settings
We present some additional settings for our experiments in
the following sections. All the experiments are conducted in
a machine with an Intel Xeon E5-2673 CPU.

Dataset details
As we mentioned before, the datasets consist of each in-
strument’s minute level price-volume information and the
order information. The market price information includes
high, open, low, close and average prices of each minute.
The volume information is the total number of the traded
shares of that instrument on the market at each minute. The
order is generated following the method described in (Qian,
Hua, and Sorensen 2007) and includes the order type (liq-
uidation or acquirement) and the target number of the in-
strument shares that needs to be executed during the time
horizon of one trading day of 240 minutes.

? ?
t t + 1

Period t

Base Strategy

Figure 2: The detailed evaluation protocol of each timestep.

Evaluation protocol
The detailed trading procedure of each day in our experi-
ment is described in this section. As we described before,
every order record should be traded before the time horizon
ends, i.e., within one trading day with 240 minutes. The de-
tailed evaluation protocol is presented in Figure 2. The trad-
ing day is divided into T periods by the T timesteps, at the
beginning of period t, i.e., at timestep t, the state st is gen-
erated by the environment and action at is proposed by the
strategy. The proposed volume to trade qt+1 = atQ is then
distribute to every minute in the coming period following a
predefined base strategy.

Specifically, in all of our experiments, we set T = 8 in
our experiment and each period has a length of 30 min-

Algorithm Policy Reward ×10−2

Mean SH600519 SH601318 SH600036 SH600276 SH601166 SH600030 SH600887 SH601328 SH600016 SH601288
DDQN Single -2.55 0.01 -3.94 0.32 -6.62 -2.13 -5.24 -5.00 0.24 -0.82 -2.33
PPO Single -20.62 -2.57 -12.28 -10.07 -29.19 -2.70 -3.62 -11.95 -48.70 -7.98 -77.12

OPD Universal 0.34 7.79 2.23 1.39 -3.75 -2.28 3.28 9.57 -6.98 -4.45 -3.37
Fine-tuned 1.82 14.30 -0.62 9.46 4.46 -7.24 4.84 2.55 -8.67 -1.13 0.21

Algorithm Policy PA
Mean SH600519 SH601318 SH600036 SH600276 SH601166 SH600030 SH600887 SH601328 SH600016 SH601288

DDQN Single 0.57 -2.82 1.31 3.61 -0.77 -0.36 -0.34 -2.19 5.41 1.60 0.28
PPO Single 4.7916 12.12 9.474 -1.31 1.4 1.70 4.97 4.016 7.213 3.079 5.257

OPD Universal 4.12 5.65 8.39 4.85 1.82 0.27 9.74 12.66 -1.79 -0.80 0.37
Fine-tuned 6.63 12.89 6.42 13.67 11.03 -4.35 11.95 9.31 -2.66 3.31 4.78

Algorithm Policy GLR
Mean SH600519 SH601318 SH600036 SH600276 SH601166 SH600030 SH600887 SH601328 SH600016 SH601288

DDQN Single 1.02 0.66 0.84 1.07 0.90 0.93 0.91 0.53 2.10 1.10 1.04
PPO Single 1.10 1.39 0.91 0.78 0.84 0.56 0.91 1.33 1.66 1.34 1.08

OPD Universal 1.29 0.87 1.19 1.31 1.79 1.07 1.49 2.12 0.73 0.99 1.37
Fine-tuned 1.11 1.18 0.89 1.82 0.93 0.76 0.88 1.18 0.64 1.39 1.49

Table 2: The test results over 10 selected instruments.

utes. Without loss of generality, following (Ning, Ling, and
Jaimungal 2018), we use TWAP to conduct the actual execu-
tion within each period, i.e., we equally allocate qt+1 on ev-
ery minute in period t. Note that, one can also replace TWAP
with any other base strategy.

Further Investigation
Rolling window experiments
To make comprehensive comparison, we generate three
datasets with a rolling window of eighteen-month length and
six-month stride size and evaluate all compared methods on
them. The detailed statistics of these datasets are listed in
Table 3.

Rolling window Phase # order Time period

1801-1908
Training 845,006 01/01/2018 - 31/12/2018
Validation 132,098 01/01/2019 - 28/02/2019
Test 455,332 01/03/2019 - 31/08/2019

1807-2002
Training 854,936 01/07/2018 - 30/06/2019
Validation 163,140 01/07/2019 - 31/08/2019
Test 428,846 01/09/2019 - 29/02/2020

1901-2008
Training 883,904 01/01/2019 - 31/12/2019
Validation 132,678 01/01/2020 - 29/02/2020
Test 465,014 01/03/2020 - 31/08/2020

Table 3: The dataset statistics.
The PA results of all compared methods on these datasets

are shown in Table 4. We can tell from the results that our
purposed OPD method steadily outperforms all other meth-
ods on all datasets, which further supports that oracle guid-
ance improves the performance of order execution policy.

Method 1801-1908 1807-2002 1901-2008
AC 2.06 1.13 1.24
VWAP 0.43 -0.79 -0.75
DDQN 4.26±0.15 2.48±0.24 3.03±0.43
PPO 1.29±0.36 -0.14±1.07 -0.76±0.21
OPDS 6.34±0.20 5.28±0.16 3.93±0.57
OPD 6.49±0.27 5.35±0.73 5.69±0.73

Table 4: The PA results on three rolling window datasets.

Advantages of universal training
Recall that our proposed method OPD uses the data of all the
instruments to train a universal policy for executing all in-

struments’ orders. However, the other learning-based meth-
ods (DDQN and PPO) were originally proposed by learning
over single instrument data and to derive an individual trad-
ing policy for each instrument. In this section, we compared
the results of the two training paradigm.

For comparison, we choose 10 instruments with the high-
est market capitalization and liquidation in A-shares market
in order to fully represent the situation of the whole market.
For PPO and DDQN, we train and evaluate the policies with
the data of each single instrument in the training and test set,
respectively. For our OPD method, we first train a universal
policy on all the training data of various instruments. Then
for each instrument, the universal policy is fine-tuned with
the corresponding instrument data in the training set. The
fine-tuned policies and the universal policy are then evalu-
ated over the test data of these selected 10 instruments.

The results are presented in Table 2. Recall that, in the
main paper, our OPD method achieves the best overall per-
formance when evaluated over all instruments. When exe-
cuting the orders over single instrument, the universal policy
of OPD achieves comparable results to that of PPO trained
with only the specific single instrument data. After fine-
tuning, OPD policies outperform all other baseline policies.
Considering that there are thousands of instruments on mar-
ket, it is costly to train different policies for each individ-
ual instrument, thus the universally trained OPD policy is
preferable more efficient, from the view of either the overall
performance or the single instrument experiment.

Moreover, we may easily notice that the Reward perfor-
mance of PPO is quite bad. The reason is that, according to
our experimental findings, most trained PPO policies tend to
converge to a policy that does not trade any shares until the
last timestep when trained on single instrument’s data, which
indicates that training over single instrument data may eas-
ily derive over-fitting. Though, on the selected instruments,
such strategy can bring good PA results. They would suffer
from large penalty of the market impact. Also, such policies
can not generalize well on the data of other instruments, nei-
ther for the data within a different time range.

In summary, the universal trading policy trained on all the
instrument data can achieve better results and generalization

Strategy Reward(×10−2) PA GLR
OPDR (searching-based teacher) -1.28 5.54 1.30

OPD (our proposed) -0.73 6.17 1.35

Table 5: Performance comparison; the higher, the better. The
performance has been aggregated as the mean value from the
results with 6 random seeds.

ability with lower cost.

Comparison with searching-based teacher
As we mentioned in the Method section, with perfect in-
formation, it is possible to find the optimal action sequence
for the teacher using a searching-based method. As for the
searching-based teacher with the perfect market informa-
tion, specifically, we traverse all the trading orders of all
the instrument in the dataset at all possible timesteps, and
calculate the optimal action sequences for each order. We
have described the learning-based teacher in the main paper.
In this section, we compare the learning-based teacher and
searching-based teacher from three aspects.

First, we compare the performance of the students guided
by learning-based and searching-based teachers. The results
are presented in Table 5, where OPD is the student guided
by the learning-based teacher (proposed in our paper) and
OPDR is the one guided by the searching-based teacher. As
we can see, OPD achieves better performance comparing to
OPDR. The reason might be that the learning-based teacher
can generate actions that are more learnable for the student
as it shares part of the state with the student.

Second, we analyze the time complexity of generating
action sequences with learning-based and searching-based
teachers. The time complexity for the learning-based teacher
to generate optimal actions for a given order dataset is
O(|D|T), where D is the size of the dataset and T is the
length of the time horizon. In contrast, as the searching-
based teacher needs to traverse all possible actions at ev-
ery timestep to decide the optimal action sequence, the time
complexity for the searching-based teacher to generate opti-
mal actions is O(|D||A|T), where |A| is the size of all pos-
sible actions. Generally speaking, |A|T � T , as a result, it
is time-consuming to generate actions in a searching-based
way.

Third, as mentioned in our paper, searching-based teacher
may require some human knowledge and, in many other en-
vironments, it is hard to implement even with perfect infor-
mation. Our method based on learning and directly interact-
ing with the environment, thus it can be transferred to other
tasks more easily.

To conclude, the learning-based teacher can bring the stu-
dent with better performance, higher efficiency and much
better scalability, thus is preferred in our oracle policy dis-
tillation framework.

References
Almgren, R.; and Chriss, N. 2001. Optimal execution of
portfolio transactions. Journal of Risk 3: 5–40.
Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learn-

ing Phrase Representations using RNN Encoder–Decoder
for Statistical Machine Translation. In EMNLP.
Ning, B.; Ling, F. H. T.; and Jaimungal, S. 2018. Double
Deep Q-Learning for Optimal Execution. arXiv preprint
arXiv:1812.06600 .
Qian, E. E.; Hua, R. H.; and Sorensen, E. H. 2007. Quanti-
tative equity portfolio management: modern techniques and
applications. CRC Press.
Weng, J.; Zhang, M.; Duburcq, A.; You, K.; Yan, D.; Su,
H.; and Zhu, J. 2020. Tianshou. https://github.com/thu-ml/
tianshou.

